

Thermal Hazard Analysis for TSE Processes

Chris Gonzalez, T233H Suzanne Prickett, R11SP Rich Muscato, T233D Chris Hovland, E313O

> 15th CMEUG Meeting October 23, 2008 Picatinny Arsennal

Background

- Thermal decompositions experienced during propellant simulant processing with the 40-mm and the 37-mm TSEs
- No conclusive findings as to the root cause of the decomposition event
- Phase 1 effort:
 - Investigated various insults that may occur in TSE processing
 - Ranked and selected critical insults
 - Selected thermal hazards around the screw tip boundary area

Objective

- To develop a method to characterize the thermal hazards of energetic materials throughout TSE process scale up and determine safe processing windows for TSE processes
- The methods should be cost effective and available in a short period of time

Approach

- Characterize material hazards
 - Predict the self accelerating decomposition temperature (SADT) and time-to-maximum rate
 - Validate results with small-scale test
- TSE process development
 - TSE process simulation software for process design
 - Obtain general process responses
- Predict material responses of TSE processes
 - Develop a model to predict material temperature
 - Estimate the highest material temperature within a specific boundary area
 - Validate predictions with experimental process run

TSE Characterization Method

Thermal Hazard Characterization

- Characterize the decomposition kinetics with DSC tests
 - ASTM Standards (internal resources)
 - AKTS Thermokinetics Software (contracted resources)
- Predict SADT and time-to-maximum rate
 - Frank-Kamenetskii (internal resources)
 - AKTS Thermal Safety (contracted resources)
 - Use simple geometries such as slabs and cylinders to represent the internal material volume of 20, 37, 40 and 88mm TSE

Process Design/Simulation

- WinTXS will be used as follows:
 - Design screw and barrel configurations
 - Simulate average process responses at various conditions
 - Optimize screw and barrel design
 - Simulate the boundary conditions required for the material response model
 - Process scale up design

Material Response Model

 Predict the temperature of the volume of material around the screw tips and toward the die entrance

- CFD Simulation w/ Fluent Software
 - Use of Herschel-Bulkley viscosity function
 - Include the rotation of the screwtips
 - Need to evaluate Fluent capabilities

Material Response Model (Cont.)

Accomplishments

- Critical insult mechanism selected
- Received modeling recommendations for
 - TSE material response model using Fluent software
 - Thermal Hazards predictions using ASTM standards and AKTS Thermal Safety Software
- Selected WinTXS TSE Simulation Software by PolyTech for process design and modeling
- Chilworth Technology teamed with AKTS-Switzerland will perform high pressure DSC tests and thermal hazard evaluation of a new propellant formulation with AKTS Thermal Hazard Software
- Material response modeling started
 - Geometry Completed
 - Material properties defined
 - Moving model development ongoing

Future Work

- Thermal hazard model validation
 - Predict the time-to-maximum rate of a propellant pellet sample at various temperatures
 - Predict the SADT of the pellet sample
 - Perform small scale test to validate model predictions
- Learn WinTXS and simulate a TSE process
- Experimental TSE process run to validate the process and material response model

